International Journal of Engineering, Science and Mathematics

Vol. 6 Issue8, December 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- FRAMES OVER HIBERT C ALEBRAS

Kalyani Pendyala

Department of Mathematics, Aurora Technological and Research Institute Uppal, Hyderabad

Abstract

Star Frame are explained with different examples. The operators on * frames are defined in Hilbert C* modules and Hilbert C* algebras. The relationship between frames and * frames are in Hilbert C* algebras are explained.

1 Introduction

Frames are first introduced by in 1952 by Duffin and Schaeffer. They abstracted the fundamental notion of Gabor to study signal processing and non -harmonic Fourier series. Alijani and Dehgan introduced * frames as a generalization of frames in Hilbert C* modules. They studied operators associated to given * frames for Hilbert C* modules over commutative unitary C* algebras. Problems about frames and * frames for Hilbert C* modules are more complicated than those for Hilbert spaces. This makes the study of * frames for Hilbert C* modules important and interesting.

2. Basic Definition

Definition 2.1:- A C* algebra is a Banach algebra equipped with an involution $a \to a^*$ satisfying the condition $||aa^*|| = ||a||^2$

Defintion 2.2:- The standard Hilbert A- Module $\ell_2(A)$ defined by

$$\ell_2(A) = \{\{a_j\}_{j \in I} \subseteq A, \sum_{j \in J} a_j a^*_j converges \ in \ A\}$$

Defintion 2.3:- Let A be a C * algebra and H be a A-module. Suppose that the linear structures given on A and H are compatible. i.e $\lambda(ax) = (\lambda a)x$ for every $\lambda \in \mathbb{C}, a \in A$ and $x \in H$.

If there exists a mapping $\langle ., . \rangle$: H× $H \rightarrow$ Awith the properties

- (i) $\langle x, x \rangle \ge 0$ for every $x \in H$
- (ii) $\langle x, x \rangle = 0$ if and only if x=0
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in H$
- (iv) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for every $\alpha \in A$ and $x, y \in H$
- (v) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for every x,y,z \in H

Then the pair $\{H, \langle .,. \rangle\}$ is called a pre – Hilbert A- module. The map $\langle .,. \rangle$ is said to be an A-valued inner product. If the pre-Hilbert module $\{H, \langle .,. \rangle\}$ is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{1/2}$ then it is called a Hilbert A- Module.

Definition 2.4:- A sequence $\{x_j\}_{j\in J}$ of vectors in a Hilbert space H is called a frame if there exists constants A,B such that $0 < A \le B < \infty$ such that

$$A||x||^2 \le \sum_{j \in J} |\langle x, x_j \rangle|^2 \le B ||x||^2 \text{ for all } x \in H.$$

Definition 2.5:- A synthesis operator T: $\ell_2 \to H$ is defined as $Te_j = x_j$ where $\{e_j\}_{j \in J}$ is an orthonormal basis for ℓ_2 .

Definition 2.6:- Let $\{x_j\}_{j\in J}$ be a frame for H and $\{e_j\}_{j\in J}$ be an orthonormal basis for ℓ_2 , then the analysis operator T*: H $\to \ell_2$ is the adjoint of the systhesis operator T and is defined as T*x= $\sum_{j\in J} \langle x, x_j \rangle$ for all x \in H.

Definition 2.7:- Let $\{x_j\}_{j\in J}$ be a frame for the Hilbert space H. A frame operator S=TT*:H \rightarrow H is defined as Sx= $\sum_{i\in J}\langle x, x_i\rangle x_i$ for all $x\in H$.

3. Definion on * Frames

Definition 3.1:- Let H be a Hilbert A-Module . A family $\{x_j\}_{j\in J}$ of elements of H is a frame for H, If there exists constants $0 < A \le B < \infty$, such that for all $x \in H$

$$A\langle x, x \rangle \le \sum_{j \in I} \langle x, x_j \rangle \langle x_j, x \rangle \le B\langle x, x \rangle$$

The numbers A and B are called lower and upper frame bounds respectively.

If A=B Then $\{x_j\}_{j\in I}$ is a tight frame

If A=B=1 then $\{x_j\}_{j\in I}$ is a normalized tight frame or a parseval frame

If $A=B=\lambda$ then $\{x_j\}_{j\in I}$ is called a λ –tight frame

Definiton 3.2:- Let A be a C* algebra and J be a finite or countable index set. A sequence $\{x_j\}_{j\in J}$ of elements in a Hilbert A-module H is said to be a *-frame for H if there exists strictly non-zero elements A and B of H such that

$$A\langle x, x\rangle A^* \leq \sum_{j\in J} \langle x, x_j\rangle \langle x_{j,} x\rangle \leq B\langle x, x\rangle B^*$$
, $x\in H$

Where the sum in the middle of the inequality is convergent in norm.

Then the elements A and B are called lower and upper *- frame bounds respectively.

We note that every frame for a Hilbert module is a *-frame .

If A=B then the *-frame $\{x_j\}_{j\in I}$ is a tight *-frame.

If A=B=1 then the *-frame is called a normalized *-frame or parseval *-frame.

Definition 3.3:- Let $\{x_j\}_{j\in I}$ be a *-frame for H. The pre *-frame operator T:H $\to \ell_2$ (A)

defined as $T(x) = \{(x, x_j)\}_{j \in J}$ is an injective and closed range adjointable A-module map.

Definition 3.4:-Let $\left\{x_j\right\}_{j\in J}be\ a$ *- frame for H . The Adjoint operator T is T*: $\ell_2(A)\to H$ Which is surjective and defined as T*(e_j) = x_j for $j\in J$ where $\left\{e_j\right\}_{j\in J}$ is the standard basis

Definition 3.5:- Let $\{x_j\}_{j\in J}$ be a *-frame for H. The *-frame operator S:H \rightarrow H is defined as $Sx=T*Tx=\sum_{j\in J}\langle x,x_j\rangle x_j$.

4.Examples of *-frames:-

4.1 EXAMPLE:- Let ℓ^{∞} be the unitaray C* algebra of all bounded complex valued sequences with the following operations.

$$uv = \{u_i v_i\}_{i \in \mathbb{N}} \ u^* = \{\bar{u}_i\}_{i \in \mathbb{N}} \ ||u|| = \sup_{i \in \mathbb{N}} |u_i| \ \forall \ u = \{u_i\}_{i \in \mathbb{N}} \ v = = \{v_i\}_{i \in \mathbb{N}} \ \text{in} \ \ell^{\infty}$$

Let \mathcal{C}_0 be the set of all sequences converging to zero. Then \mathcal{C}_0 is a Hilbert ℓ^∞ module with

 ℓ^∞ valued inner product $\langle u,v \rangle$ = $\{u_i \bar{v}_i\}_{i \in \mathbb{N}}$ for $u,v \in C_0$.Let J= \mathbb{N} and define $f_j \in C_0$ by

$$f_j = \{f_i^j\}_{i \in \mathbb{N}}$$
 such that $f_i^j = \begin{cases} \frac{1}{2} + \frac{1}{i} & i \neq j \\ 0 & i = j \end{cases}$ for all $j \in \mathbb{N}$

We observe that

$$\sum_{j \in J} \langle u, f_i \rangle \langle f_i, u \rangle = \left\{ |u_i|^2 \left(\frac{1}{2} + \frac{1}{i} \right)^2 \right\}_{i \in \mathbb{N}} = \left\{ \frac{1}{2} + \frac{1}{i} \right\}_{i \in \mathbb{N}} \langle \{u_i\}_{i \in \mathbb{N}}, \{u_i\}_{i \in \mathbb{N}} \rangle \left\{ \frac{1}{2} + \frac{1}{i} \right\}_{i \in \mathbb{N}}$$

For $\mathbf{u}=\{u_i\}_{i\in\mathbb{N}}\in\mathcal{C}_0$. The sequence $\{f_j\}_{j\in\mathbb{N}}$ is a $\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i\in\mathbb{N}}$ tight *- frame but it is not tight frame for Hilbert ℓ^∞ module \mathcal{C}_0 . Note that $\{f_j\}_{j\in\mathbb{N}}$ is a frame for Hilbert ℓ^∞ module \mathcal{C}_0 with optimal lower and upper real bounds $\frac{1}{2}$ and $\frac{3}{2}$ respectively.

4.2 EXAMPLE:- Let A be a C* algebra of the set of all diagonal matrices in $M_{2X2}(\mathbb{C})$ and suppose A is a Hilbert A module over itself. Consider

$$A_i = \begin{bmatrix} \frac{1}{2^i} & 0 \\ 0 & \frac{1}{3^i} \end{bmatrix}$$
 for all $i \in \mathbb{N}$.For $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in A$, we have

$$\sum_{i\in\mathbb{N}}\langle A,A_i\rangle\langle A_i,A\rangle = \begin{bmatrix} \frac{|a|^2}{3} & 0\\ 0 & \frac{|b|^2}{8} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0\\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix}\langle A,A\rangle \begin{bmatrix} \frac{1}{\sqrt{3}} & 0\\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix}$$

Then $\{A_i\}_{i\in\mathbb{N}}$ is a $\begin{bmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix}$ tight *- frame for Hilbert A module A but this frame for A with

optimal lower and upper real bounds $\frac{1}{\sqrt{8}}$, $\frac{1}{\sqrt{3}}$ respectively.

4.3 Example:- Let C_0 be the Hilbert ℓ^∞ the same as above example 5.2.1. For $j \in J$ consider

$$f_j = \{f_i^j\}_{i \in \mathbb{N}}$$
 such that $f_i^j = \begin{cases} \frac{1}{i} & i = j \\ 0 & i \neq j \end{cases}$

If $\mathbf{u} = \{u_i\}_{i \in \mathbb{N}}$ is a sequences in c_0 then we have

$$\sum_{j\in J}\langle u, f_i\rangle\langle f_i, u\rangle = \left\{\frac{|u_i|^2}{i}\right\}_{i\in\mathbb{N}} \left\{\frac{1}{i}\right\}_{i\in\mathbb{N}} \left\{\{u_i\}_{i\in\mathbb{N}}, \{u_i\}_{i\in\mathbb{N}}, \left\{\frac{1}{i}\right\}_{i\in\mathbb{N}}\right\}$$

Since $\left\{\frac{1}{i}\right\}_{i\in\mathbb{N}}$ is not strictly non zero in ℓ^{∞} , the sequence $\left\{f_{j}\right\}_{j\in J}$ has not lower bound condition in ℓ^{∞} and then it is not a * frame for c_{o} but $\left\{f_{j}\right\}_{j\in J}\in\ell^{\infty}$.

5.RESULTS ON *-FRAMES

Theorem 5.1:- Let $\{x_j\}_{j\in I}$ be a *- frame for H with *- frame operator S.

Then $||A^{-1}||^{-2} \le ||S|| ||B||^2$.

Proof:- Given that $\{x_j\}_{j\in I}$ be a *- frame for H by definition

$$A\langle x, x \rangle A^* \leq \sum_{j \in J} \langle x, x_j \rangle \langle x_j, x \rangle \leq B \langle x, x \rangle B^*$$
 for all $x \in H$

$$\implies A\langle x, x \rangle A^* \le \langle Sx, x \rangle \le B \langle x, x \rangle B^*$$

$$\Rightarrow$$
 A $\langle x, x \rangle$ A* $\leq \langle Sx, x \rangle$ and $\langle Sx, x \rangle \leq$ B $\langle x, x \rangle$ B*

$$\Rightarrow \langle x, x \rangle \le A^{-1} \langle Sx, x \rangle A^{*-1}$$
 and $\langle Sx, x \rangle \le B \langle x, x \rangle B^*$

$$\Rightarrow \|A^{-1}\|^{-2} \|\langle x, x \rangle\| \le \|\langle Sx, x \rangle\| \text{ and } \|\langle Sx, x \rangle\| \le \|B\| \|\langle x, x \rangle\| \|B^*\|$$

$$\Rightarrow \|A^{-1}\|^{-2} \|\langle x, x \rangle\| \le \|\langle Sx, x \rangle\| \text{ and } \|\langle Sx, x \rangle\| \le \|B\|^2 \|\langle x, x \rangle\|$$

$$\implies \|A^{-1}\|^{-2} \|\langle x, x \rangle\| \le \|\langle Sx, x \rangle\| \le \|B\|^2 \|\langle x, x \rangle\|$$

By taking supremum over all $x \in H$ with $||x|| \le 1$ we get

$$||A^{-1}||^{-2} \le ||S|| ||B||^2$$

THEOREM 5.3.2:- Let $\{x_j\}_{j\in J}$ be a *- frame for H with pre *- frame operator T. Then $\{x_j\}_{j\in J}$ be a frame for H.

PREPOSITION 5.3.3:- Let A be a C* module over itself every *- frame $\{x_j\}_{j\in J}$ be a tight *-frame for A.

Proof:- Suppose $\{x_j\}_{j\in J}$ be a *- frame for A with *-frame operator S.

Consider
$$I_A = SS^{-1}I_{A-1} \sum_{j \in J} \langle S^{-1}I_{A}, x_j \rangle x_j = S^{-1}I_{A-1} \sum_{j \in J} |x_j|^2$$

The above inequality shows that $\sum_{j \in I} |x_j|^2$ is an invertible element in A and

 $\sum_{i \in I} |x_i|^2$ is a strictly positive element of A

So
$$\sum_{i \in I} \langle x, x_i \rangle \langle x_i, x \rangle = \sum_{i \in I} |x_i|^2 \langle x, x \rangle \ \forall \ x \in A$$

Then $\{x_j\}_{j\in J}$ is tight * frame for A.

THEOREM 5.3.4:- Let $\{f_j \in H : j \in J\}$ be a *- frame for H with lower and upper * frame bounds A,B respectively. The * frame transform or pre * frame operator T: $H \to \ell_2(A)$ defined by $T(f) = \{\langle f, f_j \rangle\}_{j \in J}$ is an injective and closed range adjointable A module map and $\|T\| \le \|B\|$. The adjoint operator T^* is surjective and it is given by $T^*(e_i) = f_j$ for $j \in J$ where $\{e_j : j \in J\}$ is the standard basis for $\ell_2(A)$.

THEOREM 5.3.5:- Let $\{f_j \in H : j \in J\}$ be a *- frame for H with pre * frame operator T and lower and upper * frame bounds A and B respectively. Then $\{f_j\}_{j \in J}$ is a frame for H with lower and upper frame bounds $\|(T^*T)^{-1}\|^{-1}$ and $\|T\|^2$ respectively.

Proof: -By theorem 5.3.4 T is injective and has closed range and $\|(T^*T)^{-1}\|^{-1}\langle f,f\rangle \leq \sum_{j\in J}\langle f,f_j\rangle \langle f_j,f\rangle \leq \|T\|^2\langle f,f\rangle \ \forall \ f\ \in \mathsf{H}$ Hence $\left\{f_j\right\}_{j\in J}$ is a frame for H with lower and upper frame bounds $\|(T^*T)^{-1}\|^{-1}$ and $\|T\|^2$ respectively.

Reference:

- [1] K.Amir and BehroozKhosravai, Frame bases in tensor product of Hilbert spaces and Hilbert C* modules . Pro Indian Acadamy science Vol.117, No.1 Feb 2007 pp1-12 [2]A.Alljanil,M.A Dehgan *-frames in Hilbert C* modules ,P.B Sci,Bull.Series A,Vol-73,J114-2011.
- [3]P.G.Casuzza ,The art of frame theory, Taiwanese Journal of Maths, 4(2) 2000, 192-202 [4] Bahram Dastourian, Mohammad Janfada *-frames for operators on Hilbert modulus, Wavelets and Linear algebra .3(2016) 27-43.
- [5] D.Han and D.R.Larson, "Frames Bases and Group representations" Memories Ams Nov7 (2000), Providence RI.
- [6] M.Frank and D.R.Larson .A module frame concepts for Hilbert C* modules functional and harmonic analysis of wavelets, contemp, math 247(200), 247-223
- [7] L.Gavrutta, Frames for operators, App. Comput. Harmon, Anal, 32 (2012), 139-144.